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On the Zeros of Entire Almost Periodic Functions

By Hans Tornehave

We shal prove in this paper that a lattice ßcC which is the set of zeros of an entire 
almost periodic function/; C —» C is periodic in the direction of almost periodicity.

A method for construction of holomorphic almost periodic functions was introduced 
in [4] and was applied more extensively in [6]. During the work on [6] the authors 
noticed that the method failed if the set of zeros was a lattice and not periodic in the 
direction of almost periodicity. The authors discussed it only briefly and it was not 
mentioned in the paper.

A rotation of both the lattice and the direction of almost periodicity around the point 
0 and by the same angle will have no influence on the existence of almost periodic entire 
functions with the given lattice as set of zeros.

Accordingly, we shall assume that the given direction of almost periodicity is the 
direction of the real axis and that the lattice ß is not periodic in this direction, i.e. that 0 
is the only real number in Q. We shall study a hypothetical entire almost periodic 
function f: C —-> C with/-'(0) = ß. We are going to prove the non existence of such a 
function by deducing that some function derived from / will have properties which 
contradict each other.

The 8 lemmas of this paper arc statements directly or indirectly dealing with the non 
existing function/ Hence, they have no applications whatever beyond the scope of this 
paper. The 7 propositions are genuine statements about rather general classes of 
functions, but most of them are reformulations of known results adopted for our 
particular purpose.

The first section states the problem, introduces some notions and does some prelimi­
nary work. It ends with the key lemmas 2 and 3, which state that/and some related 
functions cannot assume very small values except near the zeros.

The second section investigates the Fourier series of/ It turns out that the 2- 
dimensionality of the lattice of zeros is reflected in the set of Fourier exponents. In fact 
the subspace of the Q-vector space R generated by the set of Fourier exponents has a 
‘compulsory’ 2-dimensional subspace determined by ß.

In the third section we introduce the spatial extension of/ i.e. a function F: R xR 
—> C with/(z) = z - a + iy. Here, Fis limit periodic and y = (yi? y?, ...) is a base
for the vector space generated by the Fourier exponents such that (y, y) spans the 
compulsory subspace. If Al denotes the zeros of F in the (x, x2;jp)-subspace of R x R, 
we have F-l(0) = p~x (A/ when p: Rx x R -> R2 x R is the projection. Further, M is a 
system of parallel straight lines, each connecting a point of ß placed in R J' x R by/(/ 
= F(yx; j) and projected on the subspace, with a point of the unit lattice in the 
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(jtp x2)-plane. The proof of this is the tiresome part of the paper and the author hopes 
that somebody will find a more elegant way of doing it.

The fourth section finishes the proof of the non existence of f by a topological 
argument. We know that /Tas the variation of its argument around each zero equal to 
2jt. 11 is possible to let small circles around the zeros off slide along the lines of M to end 
in the (Xp x2)-plane and this enables us to prove that also the restriction <p(Xp x2) = F(Xp 
x , 0, 0, ..., 0) by convenient orientation of the (Xp x2)-plane has the variation of the 
argument around each zero equal to 2jt. The lemmas 2 and 3 will also carry over and 
that makes it possible to prove that the variation of the argument of F along the 
boundaries of certain big squares has to be zero and also to be a very large number and 
that is the contradiction.

In the fifth and last section we shall prove that there is a lattice 42' CZ C and a second 
order entire almost periodic function with Q U Q' as its set of zeros.

Almost periodic properties of the function f

The field R of real numbers is also a Q-vector space and we shall use the notion oflinear 
independence accordingly. If (x.) is a sequence of real numbers which are linearly 
independent over Q we shall simply say that the numbers x., the sequence (x.) or the set 
x = (Xp x , ...) are independent.

We shall assume that the lattice 12 is spanned by the complex numbers = Oj + 
co2 = aQ + iß2, o-p a2, f ß2 e R. and that the indices are chosen such that tv/y - af = 
A > 0. We shall also assume that Q is not periodic in the direction of the real axis, and 
this is equivalent to the assumption that ß fl R = {0} and also to the assumption that ß 
and ß2 are independent.

We shall call a set T C relatively dense if there exists a real number L, such that 
every closed interval / CZ R of length L contains the real part of at least one element of T. 
By Kronecker’s theorem and the Bohl-Wcnnberg theorem ([6] p. 145, footnote) the 
following statement holds:

For every å > 0 and everyy e R the set of numbers co € Q with imaginary part in the 
interval [7 — <5,y + <5] is relatively dense.

We shall consistently use z with or without indices as notation for a complex number, 
and always with z - x + iy and the indices repeated on x andj. To a bounded interval 
/CZR corresponds a strip 5) = {z |y € I}. A strip SCZ C is a set defined in this way. We 
shall write / for the interval defining .S'. Mostly, we have / - [- A, 4] with some A > 0 
and we shall then write 5 for S .

Most of the functions considered here will be continuous functions g: C —> C, but not 
always holomorphic. We define the absolute value |^| by |g| (z) - |gU) | • We shall permit 
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ourselves the abuse of notation of confusing a function with its value, e.g. by writing 
’’the function g(zf7z” meaning ’’the function g: C —> C defined by g(z} = g(z)e7z”. For 
T 6 C we use the notation g: C —» C for the translated function gfz) — ^(^+t). For 
£ > 0, A > 0 we call reCan (e, /^-translation number ofg if |gT(z) ~g(z) | = efor every 
Z E SA. According to Bohr’s definition g is almost periodic ifg is continuous and the set of 
real (e, A)-translation numbers is relatively dense for every E > 0, A > 0. This definition 
is equivalent to Bochner’s definition, according to which g: C —> C is almost periodic if^ 
is continuous and every sequence (t. \j e N) of real numbers has a subsequence (f.) such 
that the sequence (g .) converges uniformly in every strip. This can be generalized in 
the following way:

Proposition 1. Let g: Q—^Qbe almost periodic and let S be a strip. Then every sequence (r.) of 
complex numbers v € S has a subsequence (f.) such that (g*.) converges uniformly in every strip.

Proof: We write T = p.+ io and we can then choose the subsequence (r.) with f. = p + 
. . ; U j -r • ■ 7 7 7z<7. such that (g .) converges uniformly in every strip and (<7.) converges to a limit <7. 
Tlien, obviously' (gp.+.°) converges uniformly in every strip, and since g is uniformly 
continuous in every strip, the sequence (gT-~gp-+ia) tends to 0 uniformly in every strip, 
and the statement follows.

We shall use the following statement, which is pure function theory and not very 
exciting:

Proposition 2. Let JS denote the C-vector space of entire functions bounded in every strip with the 
Fréchét-space topology corresponding to uniform convergence in every strip. LetCZ .Z?be the subset 
of functions g: C —> C with g_1(0) equal to Q or C. Then is a closed subset of./?.

Proof: We shal prove that is open. That h means that h: C —> C is entire 
and that there is either a number co 6 ßwith Å(to) ¥= 0 or a number^ eC\ß with h (^) = 
0. In the first case it is obvious that h is in the interior of.ZÄ. In the second case there 
is a disc D CZ C with center z^ and positive distance from Q, and then |/z| has infimum k > 
0 on the boundary of D and according to Rouché’s theorem every entire function 
approximating h with accuracy better than k on the boundary of D has a zero in D and 
that proves again that h is in the interior of.zA.-/. That finishes the proof.

We shall start in earnest on our non existence proof. From now on f: C —* C is an 
entire function which is also almost periodic and satisfies thatj (0) = ß. Until the end 
of section 4 we shall use f exclusively as notation for this particular function.

Lemma 1. To 8 > 0, ö > 0, A > 0 corresponds E > 0 such that every (s', A + <5)-translation 
number T off has a corresponding (e, A)-translation number co e Q off with |r- to| = <5.
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Proof: Let P denote the closed parallelogram with corners ± - c^ ± - co? and P(r), T = 0 
the set of numbers z e P with |^| = t. With T0=-min{|co| | co cß\ {0}} we define k: [0, tq] 
—> [0, oo[ by k(t) = inf |/|(T(t)). We choose T] > 0 such that t: = d, = rQ and |/(^) - 

/(•^)| = - for zl, Z2 £SA+0, \z2 -^| = T[. Next, we choose s' c]0, -[ such that s' < firfi For
the given (s', A + d)-translation number rof/we choose co 6 ßsuch that T- co eP Since 
/(—co) = 0, we have |/(r- co) | = s', hence r- co i Pfifi but that implies that |r- co| = r 
< d. For £ 6 S] we have £ - (r- co) e S' and we get the estimate

l/U + w) ~/U)l
= l/fc + COj ~f(Z + CO — T) I + \f(z - (T- CO)) -f(z) \ = s' + I £,

which proves the lemma.

Lemma 2. For A > 0 we define S fir) as the subset of points ofS with distance = rfrom Q and we 
definek4 : [0,rQ] —» [0, ^[bykfir) = inf |/|(S'4(r)) with rQ as in the proof of Lemma 1. Then k (is 
strictly positive on ]0,rf)].

Proof: We do it indirectly assuming that kfifi = 0 for some tj 6 JO, r ]. Then there is a 
sequence (z) with Z- f ^4(/) and (f(zfi) 0. Let Tbe the parallelogram from the proof of 
Lemma 1. We choose (co.) with co 6 ß such that z- co. e P,j c N. By replacing (z) by a 
convenient subsequence (which we shall still denote (£.)) we can according to Proposi­
tion 1 assume that (ffi) converges uniformly in every strip to an entire function f: 
C ■—> C, and by the compactness of P we can further assume that (z.~ co) a e P. Since 
(z~ (a + co.)) —* 0 and /is uniformly continuous in every strip, we have also (/Z + co.)) 
—> 0, but (f(a + co.)) = (fa)(af f(a), hence f(a) = 0. But Z- € S4(?j) implies that z. 
- co 6 P(r), and we have f 6 . -Z, J 6 N and Proposition 2 yields that fie . Z, hence 
fi' (0) = ß in contradiction to f(a) - 0. That proves the lemma.

Lemma 3. With P as in the proof of Lemma 1 and b = max{ [y| | z € P} we define fias the closure in
T e R}- For every fe Tfihere is then an a e P such thatjfi'fiT) = Q. Further, for A > 0 and 

k^ as in Lemma 2 we have |/(^) | = k^fir) for every z € S' zot’Z/t distance = rfrom every zero off

Proof: There is a sequence (t.) of real numbers such that (ffi —>/uniformly in every 
strip. We choose (co) with co 6 ß and r. - co e P. By replacing (r) by a convenient 
subsequence we can assume that (r - co.) —> -a, and since P is symmetric, we have a e P. 
Since (t - (co- a)) —> 0 and/is uniformly continuous in every strip, we have (fw_a) f 
and (f ) —* f uniformly in every strip. Since/ €. Z, the first statement in the lemma 
follows from Proposition 2. By Lemma 2 it is quite obvious that !//■?) I = ^4+i(r) f°r 
every z S' , and the last statement follows by passage to the limit. This ends the proof.
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The Fourier exponents of f

Let g : C —> C be an arbitrary entire almost periodic function. The function a : R —-> C 
defined by
a(k) = lim^^ dx satisfies that A - {Å e R | a(Å) =# 0} is at most
denumerable so that we have a Fourier series a{X)e2m^'. The main theorem in the 
theory of almost periodic functions states that the Fourier series is summable with sum 
g(f) and uniformly in every strip. In a more precise form this means that there is a 
function Å :/A x N[0,1] with the following 3 properties:

(1) The set {Å 6 A | k(f, ri) =# 0} is finite for every n E N.
(2) The sequence {k(f, n)) tends to 1 for every fixed Å 6 A .
(3) The sequence (5 ) of finite sums

sfz) = k(f, n)a(Å,)e2jT'^ tends to g(f) uniformly in every strip.
?

The vector space ff R spanned by A$ has a base y = (yp y2, ...). It may be a finite 
base y = (y, ..., y ), but we shall formulate the following investigations as if the worst 
happens and only occasionally refer to the rather obvious changes to be made if the 
basis is finite. By the way, it is easy to see that there is an entire almost periodic function 
h : C —> C such that has the base infinite.

It is very important for our investigations that there is a fundamental relationship 
between the translation numbers of g and the base y. This is described in detail in [1] 
where it is used in the proof of the approximation theorem, and the main points are 
summarized in [6] p 144-145 and 149-150. Unfortunately, the results are not for­
mulated in terms of the base. We shall reformulate them and add a few remarks in way 
of proving them.

In this connection we must consider some Diophanthine inequalities of the form 
I yr- c| = ö ( mod n!Z) with d > 0; y, c 6 R, n e N. That T e R is solution of the inequality 
means that there is a v eZ such that |yr-c-n!v| = <5. In connection with the base y we 
consider the following system of simultaneous Diophanthine inequalities where the 
second line gives the alternative form for y = (y[5 ..., y )

|yr| = Ö (mod n!Z),J = 1, ..., n 
l'j/.rl = ö (mod tt!Z),j = 1, ..., m

The relationship between y and the translation numbers of g is given by the pro­
position:

Proposition 3. To e > 0, A > 0 correspond å > 0, n 6 N such that every solution of (1) is an 
(e, A)-translation number of g.
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g
In fact, Tf Risan (e, A)-translation number ofg if it is an (- A)-translation number 

£
of the finite sum 5 which approximates g in S with accuracy If Qis the number of 

£ terms in 5 , it follows that T is an (e, T)-translation number T of g, if it is an (-—," 2,q
/l)-translation number of each term k{X, w) a {X}elm)fi and this will happen, if T satisfies 
a set of Diophanthine inequalities |Å.r| = <5‘ (mod Z), ; = 1, ..., q. We express the Å. in 
terms of the y and choose n large enough such that the denominators in the coefficients 
in these expression are divisors in n\ and the proposition follows easily.

There is also a reverse relationship:

Proposition 4.IfX E R has the property that to every A > 0, b > 0 exists an E> 0 such that every 
(e, A)-translation number T og g satisfies the Diophanthine inequality | Ar| = b {mod Z), then Å E 
Ä.

g

Proof: IfÅ i. A , the numbers Å, y, y,... are independent and Kroneckcr’s theorem tells
]

us that for every c) > 0, n E N some solutions of (1) also satisfies the inequality | Ar— - | =

<5 (mod n'.Z). Hence, for b < - the condition in the proposition is not satisfied by Å. This 

proves the proposition.
We shall now return to the hypothetical function fi but first some formulas con­

cerning Q must be established. For co= tv+ iß E £2 with co= n co + mop,n ,n eZ we have

a = n} Oj + ß = n}ß{ + n^ß2.

Eliminating either n or n between these, we get the 2 sets of relations

(2)

(3)

For the function f we shall simply use A as notation for the set of Fourier exponents and 
A for the vector space spanned by A. The following lemma tells that A is at least 
2-dimensional and, hence,fis not limit periodic.
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Lemma 4. O
A’ A

e A.

Proof: For d > 0 we choose <5, = tvh—i—r and for A > 0 we can by Lemma 1 choose e > 0 1 Ifll+H
such that every (s, A + (^-translation number of rof/has a corresponding a>= a + iß = 
n^(D} + ^(t»2 6 Q with IT — co I = Ö

In particular, if T 6 R we get \ß\ = Ö and (3) yields

hence |t • _1 + n I1 A 21 Ö, which is exactly 4
A

T = Ö ( mod Z). Thus, it follows from

Proposition 4 that E A, and that E A is proved in the same way.

Since are independent, we can choose the base y with y=_l,y=_L and from 
A' A 1 A 1 A

now on we shall assume that yis chosen like that, and the subspace of A spanned by y 
and y will be called the compulsory subspace.

The spatial extension of f

We shall introduce some functions defined on spaces of pairs (x’,y) of a finite or infinite 
sequence x = (x^ ..., x^ or x = (xJ} x of real numbers, and a real number y. We shall 
denote the spaces R" x R or R x R accordingly and they shall always be organized 
with the product topology. We shall formulate everything for Rx x R only.

If I GZ R is a bounded interval, we shall call the set Slf = {(x;jy) c R' x R \y e 1} the 
slice corresponding to I, and a slice shall be a set defined in this way by some bounded 
interval. If/= [-A, A], we shall also write SI J for Sl{. A function G:RX xR-* C is called 
limit periodic if it is continuous and satisfies the following condition: To E > 0, A > 0 
corresponds n e N such that | G!(x";_y) - G(x';_y) | = e if | y| = A and p - xj ,... x" - x' are 
integers divisible by nl. It is easy to prove that G is limit periodic if and only if it can be 
approximated uniformly in any given slice with any given accuracy by a continuous 
function depending only on finitely many variables x{, ..., x ;y and with an integral 
period in x,..., x . However, we shall not use that.

Proposition 5. Let G : R xR-^C be limit periodic and y = (y/} y?,...) independent. We define 
g : C —> C by g(g) ~ G(yx;y). Then g is almost periodic and A^ is contained in the vector space 
spanned by yx, y. <*



132 MIM 42:3

Proof: Let e> 0, A > 0 begiven. We choose d> 0, n cN such that | G(x";j) - G(x';j>) 

if either |x.' -x'| = ö,j = 1,..., n; |^| = A orx' -x.'forj - 1,..., n is an integer divisible by n! 
and [y| = A. Let rbe a real solution of the inequalities (1). We can choose integers V,..., 
V; such that for every xcRwe have | y(x+r) - (yx+nl v)| = 0,j = 1,..., n. With x = (yx + 
nlVp..., y^x Y„+lx> Y„+2X’---) we have the inequalities

|g(^ + t) - GU' ;j)l = I ; |G(x'j) -g(s)l =

which prove that r is an (e, A)-translation number ofg. Since the set of real solutions of 
(1) is relatively dense, this proves that g is almost periodic.

Let A be a Fourier exponent of g and T an (f, A)-translation number ofg for some 
E > 0, A > 0. Then we have

T
«(Å) (?"“'-!) - Hm I j0 U(x + T)

which yields the estimate

fl(Å)| |^-!| ^ e.

On the other hand, if |At - -| = - (mod Z) we obviously have 2 4 7

a(A)| \e2m^T - 1| = |a(A)

If A is not in the vector space spanned by yf, y2,..., some solutions of (1) will by

Kronecker’s theorem also satisfy that

A)-translation numbers of g for any A > 0 and any E < |a(y)|. Thus A is in the space 
spanned by y} y2,..., and that ends the proof.

With G and g as in Proposition 5 we shall call g the diagonal function of G 
corresponding to y and G a spatial extension of g corresponding to the base y of A . The 
subspace C - {(yx;jy) | x,y e R} will be called the y-diagonal in R x R and the affine 
subspaces C = {(x + yx;y) | x, y 6R}, x 6 R will be called the analytic planes in R x R.

Proposition 6. Let g : C —> C be entire and almost periodic, and let y = (y(, y2,...) be a base for 
A Then g has a uniquely determined spatial extension 6: R x R-» C. andfor every x e R the 
function g*: C —» C defined by g(z) — G(x+yx; j) is entire and almost periodic and belongs to the 
closure T, of | r e R} CZ
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Proof: With X = R x Z”; n e N we define W : X —» Rx byn 7 ' n n J

vi>->Y= (v + - > V +W- w>->-

For each n e N the set Af = t/i (X) x Rc^R x R is a system of analytic planes. Since ip^ is 
injective, we can define G„ ; M, —* C by

v);= g(x + ?» = ^U).

For every x € tyn(Af) we have x + yx € V (X ) for every x e R so that we can define g„ * : 
C —> C by gn (z) = Gfi(x + yx;j). Further, there is a r e R and v^..., v e Z such that x = 
ip (r; y,..., v), hence x + yx = 1? (x + r; y,..., v) and g = g . We have thus g gT.Tnv ’ 1’ ’ u7’ ~ J- ’1’ ’ n' °n,x ör °n,x g

Let us consider an arbitrary x° € Rx with its corresponding analytic plane C o. For 
n eN we define

t7(l°) = (x e Rx I |x.-x°| ^,j= 1,...,72}, 
« i j j 2n1J

and the (x°) constitute a base for the neighbourhoods ofx° in R“. For q, n eN we have 
t^(T) A G^x°) =# 0 if the Diophanthine inequalities

(4)

are satisfied by some x e R. By Kronecker’s theorem this is always the case. We have 
thus proved that the sets ip^XJ, n G N are dense in Rx. We are interested in the analytic 
plane C o, and by its n th set of neighbour planes we mean the set K (x°) of planes C with x 
e ^(T) A t/(x°). Similarly the set PF (x°) of corresponding entire functions^ * is called 
the ?2th set of neighbour functions of Ce.

For (p G .Øand A > 0 we define the norm ||<p|| = sup | (p\(S ), and the system of norms 
II • II A e]0,°° [ will then induce the Fréchét space topology on For a set. C .0 we 
can define a generalized diameter by diam^ . /0 = sup{||l/>-(jp||4 | (p, tp e. /X}. It is an 
increasing function of A and it may of course be infinite. For x, x_ G ) A ^n(^°) we 
haver, teR and v= (vp..., v), y = (v',..., v), v, veZJ = 1,..., n andx = t^(x,y), x = ipn(x 
+ T,v'). The corresponding functions of IV (x°) are g = g and g , = g . But x and x+T 

satisfy (4) with q = n, hence, r satisfies (1) with <5 = —, and Proposition 3 implies that 

diam4 PF(x°) —> 0 for n —» oo and fixed A, and uniformly for x° e R \
For n, q eN we observe that thosex = ip (x,V) which have l7,..., V divisible by (72 + 1) ... 

(72 + q) are also in ) and it follows that some functions of IT(xo) are also in 
IV (x°). With IV(x°) = Ux IV (x°) we can thus conclude thatn+qx~ ’ ' q=Q n+q'~ '
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diam. 14'(x°) = 2 diam IF(x°)./1 w' ' A nx '

x = x°a2 - x°ax + q2a{ - q^y = At = x°ß2 - x°ß} + qJ3} - qfi2,

and % , x4,... are determined by the equations in the second row. We arc not really 
interested in these additional unknowns. We get

z = x+ ty = x°æ2 - x°æ1 + q2o)x- q}cor

We have thus proved that £ intersects each analytic plane in Rx x R in a translated 
lattice spanned by co and co2>

It follows from this that every function of W’(x°) for n —* 00 converges uniformly to the 
same limit function g : C —» C, and it obviously is in T. The totality of functions in 
every C constitutes a function G : R x R —» C. It follows immediately from the 1 X
construction that G is continuous and that G(yxp>) = g(z). The limit periodicity’ of G 
follows easily from the periodicity of G, since *s everywhere dense. This also 
implies that G is unique and that finishes the proof.

We could have derived it more easily from the approximation theorem, but the proof
above underlines certain structural details, which are useful in our investigations.

ß} ß2
The hypothetical function/: C —> C with the basis y = (y[? y]5...) where yj = -t, Y2 ~ /T 

has a spatial extension F : R x R —> C. We shall compute the zeros of F.

Lemma 5. F 1 (0) is the set E given by

£ = {(or/ + qx, O^t + qr %3, *4,...; At) | t, xy *4,... 6 R, q}, q2 € Z}.

Proof: We shall consider the set £ defined in the lemma and we shall prove that it is 
identical to £_l(0). First, we determine £ Pl C0 when C'o = {(x° + yx;_y) | x,y e R} is an 
analytic plane. To do that we must determine the sets (x,y, t; x„, x , ...) satisfying the 
equations

(\t + q} = yy, a2t + q2 = x° + y>x, At =
x. = x°+ y.x, j — 3, 4,....j j j J

A
With y2 =

ß2
- the equations in the top row yield
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It follows from Propositions 2 and 6 that also F !(0) intersects each analytic plane in 
R > R in a translated lattice spanned by and To prove the theorem we need 
only that the two lattices in each analytic plane are identical, and that will follow when 
we have proved that

x, x4,..., At} - 0 for t, xy x^,... e R.

By the limit periodicity of F' it is enough to prove for every ö > 0, n e N that we can find 
co 6 co = oc + iß, such that

|^a- x.| = d (mod n!Z), j - 1,..., n; = OjZ, x? = a^t, \ß - At\ = ö. (5)

We write co = n}co} + n}, e Z, and (2) and (3) yield

A
ya - x - y. n, - x.+ 
J J J ß, i J

J J J P2 J /J2 (6)

We introduce y = max(|}'-^-| | j - 1,..., n; £ = 1, 2) and 0' = 1+^ . Then w = a + iß = 

n^+n^co? will satisfy (5) if^, n2 satisfy first that \nfy+n,fl2 - At\ = 0' and second for each 
j e N one of the following Diophanthine inequalities

or

= <5’ (mod n\7ß or | - n | = 0’ (mod n!Z)

nJ = 6' (mod n!Z) or = 0' (mod z?!Z).
(7)
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The second and third of these are satisfied by n = n\v., v f Z,j= 1, 2. The inequality 
+ - ~ becomes

1«!/^ + “ Ål\ = ö‘.

We observe that the first and the fourth of the inequalities (7) follow from this last 
inequality and, further, that the last inequality is satisfied by some v? eZ, if satisfies 

that In\ ~-ß /| = (mod n!Z). Hence, (5) will be satisfied, if 6Z can be chosen as a 

solution to the following system of Diophanthine inequalities:

= <5' (mod zz’Z), j = 3, 4,..., n.

By a slightly advanced form of Kronccker’s theorem we have that this system has 
integral solutions for all t, x, j = 3, 4,..., if and only if no linear combination of the 

coefficients n\ 3, 4,... with integral coefficients has an integral value different
from 0. In other words, solutions exist, if

implies that = ••• = = 0. However, the equation can be written

and Y3, y4,... are independent. That proves the lemma.

Lemma 6. Let R2 x R C Rv x R be the (x(, %2; andp : Rf x R R2 x R the
projection. Then EQ = E fl (R2 x R) is a system of parallel straight lines and E~x (0) = E - 
p~} (Eq). Further Efi contains exactly one straight line Lq q through each point (^, q^, 0) of the unit 
lattice in R. The sets p~} (E? ? ) are the components of E and intersects the analytic plane C in the
point corresponding to z = - dff

This is nothing more than a reformulation of Lemma 5 supplemented by very few 
and very elementary computations.
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The non existence of f
The spatial extension F of/has a restriction cp : R2—> C defined by cp(x, x^) = F(x}, x , 0, 
0,..., 0). We know that cp-1 (0) is the unit lattice in R2. The midway net Af CZ R2 
is defined as the set of all points (x(, x2) with either x( or x2 equal to- + some integer. It 

divides R2 in unit squares such that (p has one zero in the center of each square.

Lemma 7. inf |<p|(Af) = k> 0.

Proof: In each analytic plane C = {(x + yx;y)\x,y e R} we place discs defined by x = 
a + p cos 6,y - p sin 0; 0 e R, p e]0,r[ for some r e]0,rQ[ (Lemma 2) and for each co = 
a + iß 6 £?. The union of all these discs is by Lemma 5 the set of all points of R x R 
given by

(a;/ + q} + yxp cos 0, af + / + Y2P cos 6,
x + Y.T cos X4 + ^P cos At + p sin 0)
0, t, xy x4,- 6 R. pe[0,r], ?2 e Z.

Let us denote this set £ and its intersection with R2xR by É\ It follows immediately 
from the expression or from Lemma 6 that £ = p~l (£j and we have

T = ajt + qx + ^-cos a2l + / + ~^~cos At + p sin 0^ 11, 6 6 R, p e [0, r], q{, q2 eZj.

The intersection of £° with the (xj, x2)-plane is

£ = <(?1 + cos Q~a\ sin

?2 + cos a‘2 sin 0)) I 3 e R P E t0’^’ ?2 6

This set consists of elliptic discs with centers in each point of the unit lattice and they 
are exactly alike and oriented in the same manner. We choose a fixed value of r such that 
e n M = 0.

r
We know from Proposition 6 that the restriction of£to an arbitrary analytic plane is 

a function of T Hence, the lemma follows from Lemma 3 with A > 0 chosen arbitrarily. 
This ends the proof.

Lemma 8. There is an orientation of the (x, x^-plane such that the variation of the argument of cp 
along a small circle around a lattice point and in the direction given by the orientation of the plane is 
equal to 2jt for every point of the unit lattice.
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Proof: For u € [0,1] andj/^ = (yp y2, wy3, wy4,...) wc have the family of planes C - {y x\y) | 
x,y e R) in R x R and for each co = a + iß e Q and r e]0, rQ[ we get a family of circles

From Lemma 6 follows that T is a continuous family of circles in R°° x R \ F 1 (0). We 
choose the orientation of each plane C such that the angle from the x-axis to the y-axis is 

+ Then, the variation of the argument ofFalong T has its value independent ofzz, and 

since the restriction ofFto C] is an entire function we conclude that /’’has its variation of 
argument equal to 2æ along cz Q for every w f ß.

From now on we shall consider only the restriction F : R2 x R —> C of F defined by 
F(xj, ~ x<2’ have CQ cRx R it will be convenient to think of
R2 x R as our physical space with thejy-axis vertical, and C is then raised as a vertical 
wall, which divides R x R in two half spaces K and V such that the lines L slant 
downwards in I' and upwards in F. The set F from the proof of Lemma 7 is the union 
of disjoint elliptic cylinders such that each L (/ is the axis of symmetry of one of them. 
The circles F induce an orientation of each cylinder and we know that the variation of 
the argument ofFalong a curve encircling a cylinder once is 2jt. In particular this holds 
for the ellipses, in which F° intersects the (xp x2)-plane. The orientation of the (x, 
x )-plane corresponding to this can be determined in the following way: Start with a 
circle T CZ CQ with a diameter in the (xp x2)-plane and oriented according to C . Rotate it 

an angle ~ about the horizontal diameter such that its upper half goes into Vd, and it 

yields the orientation. This finishes the proof.

It must be obvious to everybody that the lemmas 7 and 8 contradict each other, but 
we must go through the details anyway such that our proof is not left unfinished.

Theorem 1. Let L2 CZ C be a lattice with no real period. Then no entire functionf: C —> C almost 
periodic in the direction of the real axis will satisfy that/^'(0) = Q.

Proof: If the theorem was false, our hypothetical function f would exist and the lemmas 
7 and 8 would hold for some limit periodic function : R —> C. Let /be the oriented 
boundary of a square on the midway net M and the length of the sides n\ for some large 
n e N. Let v e R be the variation of the argument of cp along T.

By Lemma 8 and the ordinary routine we get v — 2æ(?z!)2.
We choose n large enough such that for every (x]5 x ) € R2

x2 + n!) - <jp(xp x?)| ^^k, \<p(x} + nl, x2) - cpf}, x2)|
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Then the variations of the argument of cp along the sides of/"parallel to the Xj-axis taken
X V 4" fl ’)

together amounts to the variation of the argument of —2 * >—, but this quotient is 
JTcontained in the angle defined by |arg q = - hence the variation of the argument along 

these sides amount to at most - The same holds for the two other sides, and since the 

variation of the argument along Tis an integer multiplied by 2tt, we can conclude that 

y = 0.
This proves the theorem.

Application of Weierstrass' o-function
We shall use the notations Q, co}, m2, Oj, f [f A as before. With Q' = Q \ {0} 
Weierstrass’ (J-function is defined by

It is an entire function oforder 2 with o 1 (0) = ß, and though it is not periodic, there are 
constants r]2 e C satisfying

- n2^ = 2m (8)

such that <7 has the periodicity property

+ m) J =1,2

and for co = n CO + n^co with 7/ = we have generally

O{z + <o) =

From this follows that the function f : C —> C defined by 

has period 2 m and even co if 7^ and n are even. We remark thatj^ depends only on the 
direction of co not on co itself. We supply (3) with a corresponding formula for T] so that 
we have
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'n
and if wc let co while /3 —> 0, the ratio — will tend toco

A

and^(^) tends to the limit

/(z) = eAz~

an entire function with f~} (0) = ß and obviously satisfying

ff + tt)) = ± J\z).

We do some computation

*1~ YM = 'Äß^^A ~ + Arhß~ ^~n2A +

= - aAKß~

but since

= ("1 “ = WA ~ W2^v

it reduces to

_ yft) = 1 (-^i

by (8). Thus we have

/(t+a>) = ±^(j+2»y(^)

and with co = a + iß, Z = iy this implies

l/k + ®)| = e2"4.'4's'i/W|.

We know from Theorem 1 thatf\ C —» C is not almost periodic. Nevertheless, we have
the following

Theorem 2. The function |/| : C —» R is almost periodic. 
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Proof: We shall first prove that/is bounded in every strip, hence, we consider S' d > 
0. We choose L > 0 such that every interval on R of length L contains a number a for 
which there is a ß e [-1, 1] with a + iß = co g £2. We define K- max|/|([0, L\ x [-d - 1, 
A + 1]) and for an arbitrary £ 6 we can then find co = a + iß G £2 with \ß\ = 1 and 
x - ex G [0, L], hence z~ co G [0, L] x [-d - 1, d + 1], It follows that

2^(.4+l)
= Å e ,

and this proves that/is bounded in S' i.e. in every strip. Since/is entire, this implies 
that/is uniformly continuous in every strip.

Let E > 0 be given. We choose / e]0, 1] such that for every z and every co = a+ iß 
with \ß\ = 6, we have

1/(2 + w) -/(^ + o') I =^-

With the K introduced above we choose <5>2 > 0 such that for \ß\ < /

and with ö = min(ö1, <5 ) for \ß\ = ö we have

and together with the preceding inequality this proves that O'is an (e, d)-translation 
number of |/|, and that proves the theorem.

Theorem 3. With £2 — {co G C \ co G £2} there is an entire almost periodic function g : C C of 
order 2 and with g~x (0) = £2 U £2 such that the elements of ßU £2 are simple zeros, except 0 which is 
double.

Proof: We define g by g{z) =f{z) f {z) and g : C —> C is entire of order 2 and g_1 (0) is as 
claimed in the theorem. By the multiplication theorem |g| : C —» R is almost periodic, 
hence g is bounded in every strip. For £ = x 6 R we have g(x) = |g| (x), hence, g is almost 
periodic on the real axis. But this implies that g is almost periodic in every strip ([2], p. 
253). This proves the theorem.

A more general entire almost periodic function with g~} (0) ZD £2 could be defined by 
gßz) ~f{z + a) f (z + ä) for some a g C.

\f(Z + ") I - l/Wl
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